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ABSTRACT

Rotordynamic Analysis with Shell Elements

for the Transfer Matrix Method. (August 1989)

Edward Anthony L'Antigua, B.M.E., The Georgia Institute of Technology

Chair of Advisory Committee: Dr.Jorgen L. Nikolajsen

A
Shell finite elements were used to model conical sections with a range in pa-

rameters; axial length, radius, wall thickness, cone angle and Young's4 odulus.

The parameters were chosen to cover the complete range of rotors, casings, and

housings used throughout the turbomachinery industry. Flexibility coefficients

were generated for these structures. The need for these flexibilities to be used

in the current day rotojdynamics transfer matrix computer programs is demon-

strated. The flexibility coefficients are presented in nondimensional tables and

plots for ease in use by turbomachinery design engineers and analysts in indus-

try . ' . ,"
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NOMENCLATURE

a = flexibility coefficient relating Yk displacement to shear loading (V1 )

a, = (a) flexibility coefficient for a negative cone angle, (-0)

ap = (a) flexibility coefficient for a positive cone angle, 0

A = point on the Brazier flattening curve representing maximum

bending moment at buckling

,4, = cross sectional area

b = flexibility coefficient relating 1' displacement to moment loading

(Pi _I )

b, = (b) flexibility coefficient for a negative cone angle, -0

Pb = (b) flexibility coefficient for a positive cone angle, 0

c = measurement of the severity of curvature of the structure bending

axis under load

C, = finite element width in the circumferential direction

Cf = compressive force

CA, = conical section center of mass

d (Vol) differential element of volume

D.E. = structure differential element

C' =in-plane strain in the x direction of the element plane defined by

the x normal

ey =in-plane strain in the y direction of the element plane defined by

the y normal

e = in-plane strain in the x or y direction of the element plane defined

by the y or x normal respectively

ez = transverse strain in the z direction of the element plane defined

by the x normal



xx

ey z = transverse strain in the z direction of the element plane defined

by the y normal

ezz = transverse strain in the z direction of the element plane defined

by the z normal

E = Young's modulus of elasticity

feoy = flexibility of the structure for the rotational deflection under shear

loading

foe = flexibility of the structure for the rotational deflection under bending

moment loading

fVO = flexibility of the structure for the radial deflection under bending

moment loading

fyy =flexibility of the structure for the radial deflection under shear

loading

G shear modulus of elasticity

I - cross sectional area moment of inertia

ID =diametral moment of inertia

(ID) I = lumped diametral moment of inertia at the small radius cone end

(ID)2 = lumped diametral moment of inertia at the large radius cone end

Ip = polar moment of inertia

(IP)1 = lumped polar moment of inertia at the small radius cone end

(Up)2 = lumped polar moment of inertia at the large radius cone end

K = linear spring constant in the point matrix

h' , = shear form factor

KO,_ = torsional spring constant in the point matrix

1 = length of structure element
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1C = finite element lergth in the axial direction

m = mass of the point station

AI = mass of the hollow conical section

A = maximum bending moment for the structure prior to failure

lumped mass at small radius cone end

A11b pure bending moment applied to the structure's rigid ends

"u" =critical bending moment at which buckling begins

M ~l =pure bending moment at structure right end

Mti I = pure bending moment at structure left end

Arn = mass of the conical section based on a solid cross section with

inner radius

'1o = mass of the conical section based on a solid cross section with

outer radius

11z = pure bending moment about z axis

No, = normal force on the shell element of revolution in the O direction

No,, = shear force on the shell element of revolution in the 0k direction

No, = normal force on the shell element of revolution in the 0, direction

No, shear force on the shell element of revolution in the 0, direction

r cylindrical or conical section small end radius measured from

structure centerline axis to midwall thickness

circular radius of curvature for the differential angle, do,, of the shell

element of revolution

r2 = circular radius of curvature of the angle. €, of the shell

element of revolution.

r 3 = circular radius of curvature of the angle, 4s, of the shell
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element of revolution.

rc = radius of curvature of the structure bending axis under load

ri = cylindrical or conical section small end inside radius measured

from structure centerline axis to inside wall

r, = cylindrical or conical section small end outside radius measured

from structure centerline axis to outside wall

(R 1 )i, = inner radius of the conical section small end

(R 1 )o = outer radius of the conical section small end

R2)i,, = inner radius of the conical section large end

(R 2 ) = outer radius of the conical section large end

(RcM )iV= inner radius at the cone section center of mass

(Rc,,), = outer radius at the cone section center of mass

t conical or cylindrical section uniform wall thickness

Tf = tension force

u displacement in the x direction

v displacement in the y direction

i =shear load at structure right end

Ir-I = shear load at structure left end

Vol volume

Y = structure element right end radial displacement under load

Yi-1 = structure lement left end radial displacement under load

I = structure right end radial displacement under a unit moment load

and zero shear load

I = structure right end radial displacement under a unit shear load

and zero moment load



xxiii

Z = normal force on the shell element in the z direction

a = flexibility coefficient relating O displacement to shear loading

( V = I )

a, = (a) flexibility coefficient for a negative cone angle, -0

ap = (a) flexibility coefficient for a positive cone angle, 9

= flexibility coefficient relating Oi displacement to moment loading

(Al. -I)

, =() flexibility coefficient for a negative cone angle, -0

3 = ) flexibility coefficient for a positive cone angle, 0

{fe}T = transpose of the strain vector

HU = virtual strain energy

bV = virtual work

Aw = change in structure midlength diameter in direction of loading

0 = conical section cone angle

OC = finite element arc angle

Oj = structure element right end rotational displacement under load

Oi_1 = structure element left end rotational displacement under load

OM = structure right end rotational displacement under a unit moment

load and zero shear load

= shell element of revolution rotation about the element z axis

= structure right end rotational displacement under a unit shear load

and zero moment load

V = Poisson's ratio

7r = ratio of the circumference of a circle divided by the diameter

p = mass density of the structure material
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C" = stress at a point in the shell

{u} = stress vector associated with the strain vector by the constitutive

equations

= Oi + -ji, the angle associated with the radius of curvature of

the structure bending axis under load

= shell element of revolution rotation about the element x axis

= angular coordinate location for the Brazier coordinate system

w = structure natural frequency

00 = infinity



1. INTRODUCTION

In the turbomachinery industry, the emphasis is to develop more and more

efficient engines with higher reliability at a minimum cost. In the long run, the

bulk of the cost is encountered when there are compromises on reliability and

thus maintainability of the engine. Millions and eventually billions of dollars can

be saved by increasing reliability and decreasing maintenance down time required

for the advanced turbomachine. The primary cause for decreased reliability and

high maintenance costs of the engine is vibration during operation. The study of

how to control and minimize the vibration loading input to the various members

of the engine assembly is by no means simple

An ideal method of solving these vibration problems is to be able to an-

alytically predict the vibrations during the design and development phase of

the engine. One tool used by Rotordynamicists today is the transfer matrix

method. The method developed by Mykelstad (1944), Prohl (1945), Koenig

(1961), Sevcik (1963), Lund et al., (1967), Hibner (1975), and Various other

authors is maintaining its popularity due to its relative ease in use and fast

computer solution time.

This work is mainly concerned with improving the accuracy and range of ap-

plication of the transfer matrix method used in rotordynamics analysis. Current

day rotordynamics transfer matrix programs are based on modelling the rotor

sections with closed form beam theory solutions. However, many advanced en-

gines today such as used in aircraft applications have thin walled conical section

This thesis follows the style of the .4SME Journal of Vibration, Acoustics,
Stress, and Reliability in Design.
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rotors which cannot be modeled as beam sections. In addition, the whole engine

must be modeled including the housings and casings which also do not deform

according to beam theory.

There have been recent publications proposing various methods for solving

this problem of inaccuracy due to the beam modelling used in the transfer ma-

trix approach. Rouch et al., (1979), Nelson (1980), To (1981), Greenhill et al.,

(1985), and Gupta (1986) have all worked on developing new finite elements for

the finite element method as an alternative to the transfer matrix method. In the

pursuit of increased accuracy, many major turbomachinery engine manufactur-

ers have generated highly complex and very expensive finite element modelling

of complete engine structures. Becker ,* ' (1988) has published one such

general finite element method 1"r rotordynamics analysis. However more accu-

rate the analysis may become, there is a high dollar cost for the engineering

and computer time involved in the finite element modelling of today's advanced

turbomachinery such as the light weight high performance jet aircraft engines.

Shell finite element analysis was used to generate the design data presented

in this work. The design data can now be used in the transfer matrix method

by design engineers and analysts without having to do any shell finite element

modeling. Not only will this result in engineering and computer cost savings

but it will also free up engineers and analysts to work on other problems in

turbomachinery which need to be solved. Beamish et al., (1988) has presented

a paper on this approach, however, using the finite element frequency method

of determining the design data. The finite element frequency method was also

published by Beamish et al., (1986). Thompson et al., (1988) modeled the

complete LM2500 U.S. Navy gas turbine engine using the transfer matrix method
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with finite element conical section flexibilities. Although the conical section

flexibilities were determined for only the specific LM2500 gas turbine engine,

his demonstration serves as an excellent validation of the shell finite element

transfer matrix approach presented in this work.

The design data are developed herein by modeling conical sections of in-

dustry specifications using shell finite elements. The flexibility coefficients for

the complete range of structural geometries encountered within industry have

been generated. These values are tabulated and plotted in nondimensional form

for ease in application by turbomachinery design engineers and analysts. The

method of replacing the old inaccurate beam flexibility coefficients with the shell

generated flexibility coefficients adds no complexity to the current transfer ma-

trix analysis. Rather, it actually decreases computer solution time by decreasing

the number of stations in the analysis and can greatly increase accuracy of crit-

ical speed predictions, especially in rotors with thin conical sections.

In this work, axisymmetric cantilevered shells with nonaxisymmetric loads

were modeled. The left end of the structure was held fixed and the right end

cantilevered. The right end was then tip loaded first by a unit moment load

and second by a unit shear load. The tip radial and rotational displacements

were measured for the two separate load cases in turn. By using the force,

displacement and flexibility mathematics relations, the needed flexibilities and

thus nondimensional flexibility coefficients were obtained.

From the beginning of this work, the effects of cross section ovalization of

the hollow structures under load were raised as a potential problem. The effects

on the linearity of the flexibility coefficients was found negligible for the loading

expected in turbomachinery applications. A literature survey on the theory of
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this ovalization was conducted and is presented including actual quantification

of these effects.
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2. THEORETICAL BACKGROUND

In order to demonstrate the improvement of using shell elements in the

transfer matrix method, a review of the current method is presented. The spe-

cial considerations of using shell elements is also presented. The field transfer

matrix for a general elastic structure is developed. The special case of the Timo-

shenko beam element using advanced strength of materials (A.S.M.) for the field

transfer matrix is also presented. The flexibilities of both the general structure

element and specific case beam element are developed. Convergence of flexibility

values as the general structure approaches a beam structure is discussed. The

flexibility transformations of a general structure loaded at opposite ends in turn

is developed.

The point transfer matrix for the conical shell structure cannot be modeled

by conventional lumping at the ends of discrete beam sections. Large errors for

the lumped masses, polar and diametral moments of inertia will result when the

structure is modeled in this manner. The lumped masses, polar and diametral

moments of inertia are shown as developed in Beanish et al., (1988).

The nonaxisymmetric partial differential equations for shells of revolution

are presented and discussed. The finite element method of solution was chosen

because of its ease in this application. The shell finite elements are discussed

along with the method of solution.
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2.1 Field Transfer Matrix Development

The field transfer matrix can be developed for an elastic structure of any

geometry provided the proper boundary conditions are applied. The energy

and displacement principles of both Betti's Reciprocal Theorem and Maxwell's

Reciprocal Theorem (Tuma, 1969) and the theory of advanced strength of ma-

terials have been applied in the development of the transfer matrices contained

herein. Both ends of the general elastic structure have been constrained to re-

main rigid. These are essential boundary conditions in order that the theory of

transfer matrices can accurately model the strain energy state and deflections

of the structure under load. The deflections were measured as shown in Fig. 1.

The general form of the transfer matrix which governs the relation between the

state of the structure at the left end, (i - 1), and at the right end, (i), is;

8i 0 1 /3 a 0i-1

Mi 0 0 1 {Mi-1 (1)

The state variables of radial displacement, angular displacement, moment load-

ing and shear loading are illustrated in Fig. 2. (For the derivation of equation

(1), see APPENDIX A.)



Fig. 1. Tip deflections of a cantilevered section.
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V 1 4 ,

Mi

Yt-i Y1

Fig. 2. General structure element under shear and bend-
ing.
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2.1.1 General Structure Element

It is shown in APPENDIX A for a general structure element that the state

variables at the right end can be related to those at the left by the flexibilities of

the element. This can be stated in the form of the transfer matrix of equation

(2) 4 -a I I fy }(Y)-fy -Oi 0 1 fo lVfo) l- fey 0i-1(2
-Ili 0 0 11 1 -Il2)

I " 0 0 0 1 Vi-1

It is important at this point to note from equation (2) how the general flexi-

bility coefficients, a, b, a. and 3, of conical structures can be obtained. The

flexibilities of the structure fye, fyy, foe, and fey, shown in equation (2), can be

obtained by inverting the stiffness matrix of the structure. Thus the problem of

generating the previously unknown conical shell structure transfer matrix flex-

ibility coefficients is reduced to obtaining the inverse of the stiffness matrix of

the structure. This has been achieved by the tip loading method explained in

the Introduction. (For the derivation of equation (2), see APPENDIX A.)
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2.1.2 Timoshenko Beam Element

It can be shown for a Timoshenko beam element that the state variables

at the right end can be related to those at the left by the use of closed form

expressions. This relation can be stated in the form of the transfer matrix of

equation (3).

(1)I' 2E1 6EI GAcK,Ot0 1 _L 12  -7 (E (3)
0 0 1 1 -Ili 1  J

-' 0 0 0 1 - Ii -1 I

This closed formed transfer matrix is developed using advanced strength of ma-

terials. (For the derivation of equation (3), see APPENDIX A.) Current day

transfer matrix computational programs are based on different forms of equation

(3). Some neglect the shear term (G ) and others who include the term often

use a generalized constant shear form factor, K, = 0.75. Both of these current

practices can severely limit the applicability of transfer matrix analysis to the

wide spectrum of rotor modeling discussed in the Introduction. The errors are

quantified in section 5.4.
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2.1.3 Cantilevered Shaft Flexibilities

In order to determine the conical shell flexibilities a, b, a, and 3, it is first

advantageous to reduce these to expressions based on the tip deflections of the

cantilevered conical section under unit tip loading. These are;

a =(Y) (4)

b Ym (5)

a l(o) + 0, (6)

3 (7)

(These equations are developed in APPENDIX B.)

2.1.4 Cantilevered Beam Flexibilities

The flexibility coefficients a, b, a, and 3 for a Timoshenko beam element

including shear from advanced strength of materials can be obtained using the

methods of section 2.1.3. (This is also shown in APPENDIX B.) The closed

form expressions are;

13 1a =- - (8)
6EI GACK(

b=af P (9)
2E1

l
3 =- (10)

El

2.1.5 Shaft-Beam Convergence

The theory used in the development of equations (4), (5), (6) and (,) has

no basic assumptions limiting the geometry of the structure. Thus it should

follow that as the geometry of the structure approaches that of a Timoshenko
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beam element, the corresponding flexibility coefficients a, b, a, and 3 should

converge upon the closed form expressions of equations (8), (9) and (10). This is

demonstrated and discussed in the numerical results and discussion of section 5.

2.1.6 Conical Flexibility Transformation

By applying the principles of both Betti's Reciprocal Theorem of energy

and Maxwell's Reciprocal Theorem of displacements (Tuma, 1969) with transfer

matrix mathematics, a very simple transformation is developed relating the

conical shell flexibility coefficients of a positive angle cone to the same geometry

but of a negative angle. (See Fig. 3.) The equations are;

a, = ap (11)

bn = a~ P(12)

an = bp (13)

n= (14)
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I I

r

Fig. 3. Positive and negative angle conical sections with
dimensioning.
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(See APPENDIX C for the derivation of equations (11) through (14).) For the

conical flexibility transformation illustration of Fig. 4, both the large left end and

small right end are constrained to remain rigid. The solid line walls represent the

deformed structure under load, either shear or bending or combined. By first

considering the undeformed negative angle structure, fixing the left end, and

loading the right end (positive attitude loading), the deformed structure of the

solid line results. Conversely, by fixing the right end of the positive angle struc-

ture and loading the left end (negative attitude loading), the identical deformed

structure of the solid line results. This is due to the rigid end constraints. It is

important to note that the defformed structures of each attitude loading have

identical stress and strain energy states. The tip deflections are measured as

previously defined in Fig. 1. The equivalent rotational displacements are easily

seen. The radial displacement transformations are developed in APPENDIX C.
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Loaded structure
for both positive
and negative attitude

Unloaded structure,

negative attitude, (small end fixed).

Unloaded structure,

positive attitude. (large end fixed).

Fig. 4. Conical flexibility transformation illustration.
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2.2 Point Transfer Matrix for Conical Sections.

The point transfer matrix represents the lumped masses, polar moments of

inertia and diametral moments of inertia of the rotor shaft or casing sections

lumped at the "point" between any two sections (or stations) of the complete

rotor-bearing system. Other dynamic effects of the complete system are assem-

bled into the point transfer matrix but are not discussed here because of their

independence of the shaft modeling. These other dynamic contributions, for

example, are bearings, seals, supports and foundations. (See Fig. 5 for an illus-

tration of the -point" transfer section.) In order to describe the terms in the

"point" transfer matrix, consider the simplified special case of forward circular

synchronous whirl due to unbalance response;

11 1 0 0 0 l-
i 0 1 0 0 O i_

-i} 0 2(ID, - Ip,-,) - K 8  1 0 {Ali-,
, _(K i-1 -- - l ,_2) 0 0 1 Vi-1

(15)

When modeling a conical section as a shell rather than a series of stepped beams,

the lumped masses, polar moments of inertia and diametral moments of inertia

cannot be evenly divided between the two points on either end of the conical

shaft section. Dividing evenly is the correct method for cylindrical sections, but

large errors up to changes in order of magnitude will result if this is attempted

for conical sections. especially for large cone angle sections. Beamish et al.,

(1988), by taking the geometrical properties into account, has developed closed

form expressions for the lumped masses, polar moments of inertia and diametral

moments of inertia for conical sections.
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"Point"
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(1=0)
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Vi 1  yVi
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"Field"
Station

(1=1)

Fig. 5. -'Point" -Field" shaft sections diagram.
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2.2.1 Lumped Masses and Polar Moments of Inertia

Referring to Fig.6, according to Beamish et al., (1988), the lumped mass

at the small radius cone end is
Cf-'Aldl = (I - --yif). 1(6

and the lumped mass at the large radius cone end is

.'d2 =( pi (17)

where the mass of the entire conical section is

3"

= --r- (R' - R 1 R 2  R2) - (R2 - R 1 R 2 -R) (18)

and the cone center of mass is

CM = (19)

M. - Adi,
The outside radius is

l [(R+ 2RR 2 + 3R) (20)

and the inside radius is

[ [(R ,2R 1 R 2 - 3R;)1 (21)

, [ - (Ri -- R 1 R2 - R) ,,.,

The lumped polar moment of inertia at the small radius cone end is

(IP) ( C,v)[p (22)
C

and the lumped polar moment of inertia at the large radius cone end is

(IP)2 = (- ) IP (23)

where the polar moment of inertia for the entire conical section is

I pi- [(R4 + R3R 2  R2 R 2 RR - R 4)(
S 1 1 2  1 2~ 2 2~ (24)

-(R 4 + R'R2 R+ RR 2 R, R -- R 4),
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(R2) in

Fig. 6. C'onical section center of mass diagramn.
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2.2.2 Lumped Diametral Moments of Inertia

Referring to Fig.6 and section 2.2.1, the diametral moment of inertia for

the entire cone is given by

ID pr{ [-(R" 4 R 3R2 -R~R 2 R R 3 R 4)12, 1 1R12 + RIR2-

R,2 R1R2 R2

10 5 (25)

I- R R 3R2  R 2R 2 + R1 R 3 R 4)

13( R _ R _ _ R22

30 10 5 _

and the lumped diametral moment of inertia at the small radius cone end is

solved for by the substitution

I = 11 = CM
(ID)i = ID with (R 2 ). =(Rc.)o (26)

(R 2 )in = (Rc )j,

and the lumped diametral moment of inertia at the large radius cone end iF

solved for by substitution

Il=12
(ID)2 = ID with (Rl)o =(Rc)o (27)

(R 1 )ifl = (Rc),,

The outer and inner radii at the cone section center of mass are
Ci

(Rc.)o = (Ri) - (--)(R 2 -RI)

(28)
h= (Rl)i, C (-'if)(R2 -
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2.3 Shell Theory

The analysis of uniform shells of revolution under edge loading is by no

means a trivial problem. The loading is nonaxisymmetric, thus resulting in a

nonaxisymmetric distribution of stresses and strains throughoLt the shell. The

solution to the nonaxisymmetric partial differential equations for the cylinder

(simplified special case of cone with cone angle 0 = 0, see Fig. 3.) is also nontriv-

ial. An exhaustive literature search was conducted resulting in no closed form

solution found for either conical or cylindrical shells of revolution.

2.3.1 Shells of Revolution

As stated in Timoshenko et al., (1959), the governing equations for shells

of revolution are

N6, + - Z (29)
ri r2

with the nonaxisymmetric partial differential equations

0 ON 049 (NO, r 3 )  
p1 0 r , - No, r1 coso, + Yr 1 r 3 = 0 (30)

and

a 0( r 3 N \o O N, r l  - .V e,,rcos o8  -- X r 3 r -= 0 (31)
ao' aos

(See Fig. 7 for an illustration of these normal and shearing forces.) It is important

to note that the solution of these equations will yield the membrane stresses only.
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2.3.2 Finite Element Solution

The finite element method was chosen to solve for the flexibility coefficients

for shells of revolution. An assemblage of thin "quadrilateral shells" from the

ANSYS Engineering Analysis System (1985) were used. (See Fig. 8 for an illus-

tration of the ANSYS quadrilateral shell element.) The global stiffness matrix

was assembled by ANSYS taking into account both membrane (in-plane) and

bending (out-of-plane) stresses. The element is actually a thin flat plate derived

from thin plate theory simplified by the Kirchhoff assumptions:

i) Straight lines initially perpendicular to the reference surface remain

straight and perpendicular to that surface after deformation. (There-

fore, no out-of-plane shear deformation is included in the analysis.)

ii) Line segments initially perpendicular to the undeformed reference sur-

face suffer neither extension nor contraction. (No thickness changes.)

The element stiffness matrix is assembled by accounting for the stiffness contri-

butions due to in-plane stresses and out-of-plane stresses separately and then

assembling these contributions together to form the element stiffness matrix.

First, for the in-plane membrane stresses, from the additional Kirchhoff assump-

tion,

iii) The transverse stresses are assumed small in comparison to in-plane

membrane stresses. (Thus for the strains, e,, = e: e., = 0).

and the theory of elasticity, the strain relations become;

U = -(32)

OX

e at, -- (33)

Ou Ov (4- 09 V (34)
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In addition, for the in-plane stresses, small rotational stresses are accounted for

using the method of Zienkiewicz (1977). Next, for the out-of-plane bending finite

element shape functions, the above Kirchhoff assumption (iii) does not apply.

The method of the DKT Triangle of Batoz et al., (1980) and Razzaque (1984)

is used for the development of these out-of-plane bending strain contributions

to the element stiffness matrix.

Once the strain relations and displacement functions are defined as above,

ANSYS uses the energy method of solution for the loaded structure. The prin-

ciple of virtual work used is

V = U (35)

where the virtual strain energy is expressed as

6"= J{6e}T{o}d(Vol) (36)

where the strain vector is as defined in equations (32), (33), (34) with the dis-

placement functions of Zienkiewicz (1977), Batoz et al., (1980) and Razzaque

(1984) substituted in the equations for u and v. The stress vector is associated

with the strain vector by the constitutive equations.
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Fig. 8. ANSYS quadrilateral shell element.
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3. OVALIZATION RESEARCH

The ovalization research was accomplished in order to quantify the effect

of ovalization on the shell flexibility coefficients. It was determined that the

effects were negligible for the shell geometries and loading applicable in the

rotordynamics industry.

3.1 Ovalization of Shells of Revolution

One objective of this research was to investigate and determine the effect

of ovalization on the transverse bending behavior of thin-walled shells of rev-

olution as used for example in gas turbine engine casings. Ovalization is a

geometric nonlinear deformation process. This nonlinear behavior to collapse

of shell structures under a bending load is a complex problem even for shells of

simple geometry.

L.G. Brazier (1927) is attributed with the first theoretical analysis attempt-

ing to quantify ovalization in his paper entitled "On the Flexure of Thin Cylin-

drical Shells and other "Thin" Sections." For pure bending, Brazier (1927) used

the theory of minimum strain energy coupled with the theory of flexure displace-

ment for a circular cylindrical thin-walled shell of infinite length. To obtain the

equations of equilibrium, first and second order terms were taken into account

giving rise to the nonlinear equations. According to Brazier (1927), the shear

effects quantified in third and higher order terms need not be taken into account

as long as the cylindrical shells are "sufficiently thin." With the equations de-

veloped for an infinitely long cylinder, no boundary condition end effects had

to be accounted for. Because maximum ovalization occurs at maximum length

over radius ratio ( ) , any decrease in the ( ) ratio will decrease the amount

of ovalization predicted by Brazier (1927) for an infinitely long cylindrical shell.
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As seen in Fig. 9, the linear theory of flexure developed by St. Venant (as stated

in Brazier (1927)) predicts a much different force-displacement relationship than

the nonlinear prediction given by Brazier (1927). Note here that the axis cen-

terline curvature, c, is inversely proportional to the radius of curvature, r,. It

should be noted that St. Venant's solution had only taken first order terms of

flexure into account, thus predicting the bending behavior of a non-deforming

circular rigid cross section along the entire length of the cylindrical shell. How-

ever, it should also be noted that for small displacements of cylindrical shells

of small ( ) ratios, St. Venant's linear theory of flexure is very accurate. Theo-

retically, all finite length cylindrical shells will behave in a manner somewhere

between the two limiting cases of St. Venant and Brazier (1927).

The need here is to quantify the effect of ovalization on the flexibility co-

efficients for cylindrical shells of practical engineering application such as gas-

turbine engine casings. Referring to Fig. 9, St. Venant's solution is represented

by the equation;

JIb = Eirr3 tc (37)

However, the governing differential equation presented by Brazier (1927) is;

91, 04 , . 2r - 18c2r5
-- , 2- (1 - l2 )sin(20,) (38)a?,6 & 0,4 OV, 2  tP

(These variables are illustrated in Fig. 10.) The solution is represented by the

equation;

1b =Err 3 t [2c - 3r 4 c 3(1- V2)] (39).lb 2 t2

For a maximum bending moment denoted by point A of Fig. 9;

-2V/_2Eirrt2
. =2v E'rt2(40)

9(1

and,
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2
Aw r (41)

(See Fig. 11 for an illustration of this Aw Brazier flattening (ovalization).) It

should be noted that for pure bending, the Brazier flattening of equation (41)

gives the maximum ovalizing at point A of Fig. 9.)

According to Antonenko (1981), "The phenomenon of ovalization of a cir-

cular cross section in the bending of a shell as a beam is attributable to the effect

of additional toads which arise in the process of curvature of the shell axis. The

pattern of loading may be described as follows. In bending of the shell axis, ten-

sile axial forces on the convex side and compressive forces on the concave side

yield resultants directed toward the shell axis. Ovalization of the cross section

takes place under the influence of these loads. " (Refer to Fig. 12 for a graphical

representation of these resultant forces.) Antonenko (1981) accounted for oval-

ization in an infinite system of coupled differential equations which he solved

by successive approximations. Antonenko claims that ovalization need be taken

into account only for cylindrical shells with large (-L) ratios and very small (-)

ratios (thin-walled) only. No limiting ratios were given. However, limiting ratios

are established in the following Ovalization Research Section.
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Brazier's solution
- - - -St. Venant's solution

Curvature, C
(0 increasing)

Fig. 9. Brazier's nonlinear solution compared with
St. Venant's linear solution.
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Fig. 10i. Brazier's coordnate system for a cylindrical cross
section.



31

r rA Tension
Half

ICompression
Halfir

&Wna

-- -- -- U de.r e

"BairFlteig

Fi.1.B airfateig(vlzto .



32
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RLR
C /-D.E.

C: Compressive force
T: Tension force
R: Resultant force
D.E.: Differential element

Fig. 12. Antonenko mechanization of ovalization.
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3.2 Computational Analysis

Stephens et al., (1975) generated finite difference models using the STAGS

computer code. The models were isotropic cylindrical shells with ($) = .01,

E = 1.0 x 107 psi. and v = 0.3. The (i) ratio was varied from model to model.

A moment couple for pure bending, H, was applied. Both ends of the cylindrical

shell were essentially rigid (no ovalization at ends). The finite difference grid

point spacing was varied in both the axial and circumferential directions to

allow for a finer mesh concentration at the expected maximum ovalization region

(midpsan compression). The STAGS code used a linear flexure theory coupled

with a nonlinear geometric "fudge factor" to allow for the expected nonlinear

prebuckling state.

The deformation shape output by the above mentioned STAGS computer

code was controlled to deform as shown in Fig. 11. Fig. 13 illustrates the oval-

ization dependence upon the (1) ratio. As shown in equation (42), the critical

bending moment. Me, is solely dependent upon the cylindrical shell geometry

and Young's Modulus of elasticity.

-1lc, = 0.6Eirrt2  (42)

Al is the bending moment applied given in equations (39) and (40). Stephens

et al., (1975) combined equations (40) and (42) to obtain the moment ratio for

a Brazier infinite cylindrical shell for this particular shell model geometry;

.\-- _ 2x/2Eirrt2  1M = 0×rt (43)
.11C 9(1 - V2) 2 0.6E7rrt 2

or for a poisson's ratio = 0.3, by substitution and algebra;

- 0.55 (44)r I
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Also, by combining the model geometry of .01 and Brazier's equation (41),

Aw 2 r -
=- x - = 22.22 (45)t 9 t

It is important to note in Fig. 13 that the envelope curve for the model ap-

proaches the predicted value of Brazier's equation for an infinite cylindrical shell.

It is also important to note that for all ( ) ratios, ovalization does occur but

is negligible for small ( ) ratios. Circumferential flattening or ovalizing of the

cross section is more and more nonlinear for higher and higher (-) ratios. The

major percentage of ovalization (when large ovalization does occur) takes place

at or near the buckling load. Refer to Table 1 for calculations of actual change

in diameter over thickness, (7) ratios, for the models represented in Fig. 13.

It is very important to note from Table 1 that for small bending moments and

neutral axis displacements, ovalization becomes very small.

Additional computational analysis was performed for cylindrical and conical

sections using ANSYS. The results confirm negligible ovalization for geometries

and loadings of practical interest. (See the numerical results and discussion of

section 5.)
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Fig. 13. STAGS computer code envelope curve for Bra-
zier flattening.
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Table 1. Nondimensional Ovalization ( ) for Thin Cylindrical Shells Under

Varying Bending Load with ( ) = .01, Varying (1) ratio.

Buckling @ IBuckling 1 Buckling © 8 Buckling2 4 8
Load Load Load Load

3.4 0.2 0.09 0.03 0.01

6 1.0 0.4 0.15 0.03

10 I 4.1 0.8 0.20 0.05

15 9.7 1.5 0.40 0.08

20 15.7 2.0 0.45 0.10
_ _ _ _ _ _ _ I _ _ _ _ _ I _ _ _ _ _ I _ _ _ _
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3.3 Experimental Verification

Experiments were carried out by Brazier (1927) with long ( 45) thin

tubular beams made of celluloid and loaded in pure bending. All specimens

deformed into the quasi-oval form of Fig. 11 at high loads near buckling. The

nature of the force verse neutrbL axis curvature is shown in Fig. 14. It is very im-

portant to note that deviation from the linear St. Venant's solution is negligible

until near buckling loads are applied. Notice as stated earlier, that the exper-

imental tubes do behave in between the two limiting cases of St. Venant linear

theory and Brazier's (1927) geometric nonlinearity theory. These experiments

by Brazier (1927) also agree with the computational results of Stephens et al.,

(1975).

Experiments by Lundquist (1933 and 1935) show that for hundreds of metal

tubes ranging with (1) ratios up to 5 and very thin-walled ratios (t) down to

.0015, there was no measured ovalization. St. Venant's linear theory of flexure

wa. perfectly suitable for these specimens. Osgood's (1938) experiments record

no ovalization for metal specimens with (-) ratios up to 10, but for (1) ratiosr r

greater than 10 ovalization was observed however small. Roark's (1941) exper-

iments record no ovalization for metal specimens with ( ) ratios ranging up to

2. Wilson's et al., (1941) experiments record no ovalization for shells with ( )

ratios ranging up to 2.4. Gerard et al., (1968) concluded on these experiments

that the Brazier effect is only seen in cylindrical shells with high (L) ratios,

thin-walled, and even then only at high loads near buckling.

According to Bushnell (1981), the nonlinear prebuckling effects of Brazier

flattening have a significant impact upon the buckling load. However, at loads

well below the buckling load, the effects are insignificant. The nonlinear pre-
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buckling effects of Brazier flattening do cause a drop off in cylindrical shell stiff-

ness. However, this nonlinear stiffness effect is only significant at high Brazier

flattening.

iy
M9M

Bucklreaing

010

4I0,

-0 Lnear Theory Membrane Solution

0-0 Brazier Experimental Curve

----- ---- Theoretical curve for tube

with no end constraints

Curvature, C
(0 increasing)

Fig. 14. Brazier's experimental plot compared with Bra-
zier s theoretical plot compared with St. Venant's linear
plot.
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3.4 Ovalization Conclusions

The following conclusions are emphasized as the important ideas which

should be understood from this ovalization study.

A closed form linear solution relating bending moment to curvature of

neutral axis does exist for cylindrical shells in pure bending. This is called

St. Venant's theory of flexure. This linear solution assumes no change in cross

section throughout deflection.

A closed form nonlinear solution relating bending moment to curvature of

neutral axis does exist for cylindrical shells in pure bending. This is called

Brazier's theory of flexure which accounts for second order terms introduced by

"Brazier flattening" or ovalization.

The Brazier flattening is more pronounced on the compression side of the

cylindrical shell.

Thin-walled cylindrical shells with low (1) ratios bend according to the

linear solution on which the flexibility calculations of this work is based.

In applications such as gas turbine engine casings, and rotor shaft sections,

stiff boundary conditions usually restrict cross section ovalization thus making

the contribution of the Brazier flattening even more negligible.

It is very important to note that deviation from the linear St. Venant's

solution is negligible until near buckling loads are applied. This is true for even

the large ( ) ratios and small ( 1) ratios of less than .01.

Because of this Brazier flattening deformation behavior, for small loads and

consequently small neutral axis displacements, ovalization of the cylindrical shell

cross section has almost no effect upon the linearity of the load-displacement

(stiffness) curves for even large ( ) ratios in transverse bending.
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3.5 Additional Comments

It should also be noted that from the Stephens et al., (1975) computational

solutions, ambient pressure has an effect on the Brazier flattening. External pres-

sures applied to a cylindrical shell accentuate or increase the Brazier flattening

while internal pressures lessen the Brazier flattening. Thus for turbomachinery

with high internal pressure such as in a gas turbine engine, even less Brazier

flattening will occur. Brazier flattening is also affected by the Young's modulus

of the material. In the limiting case, a completely strain hardened material will

have a much smaller neutral-axis deflection with load and thus a much smaller

Brazier flattening.

The Brazier flattening phenomenon will have an effect on the dynamical

behavior of cylindrical shells. However, this effect will be negligible in cylindrical

shells with boundary conditions limiting the Brazier flattening. Because the

Brazier flattening deformation is opposite in direction to the dynamic response

deflection, a small reduction (if any) in the first bending natural frequency of the

cylindrical shell would be expected. With the cyclic deformation shapes expected

similar to Fig. 11, the small fluctuations in the effective inertia should occur but

are expected to be negligible. Also, with Brazier flattening, this increase in

deflection of the shell should increase the differential element velocities and thus

increase the internal material damping, an effect expected to be negligible.
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4. FINITE ELEMENT COMPUTATIONAL ANALYSIS

The finite element method was used to solve for the flexibility coefficients

of the conical structures of interest. The ANSYS engineering analysis computer

code was used to generate the shell models, boundary conditions, meshes and

solutions for these conical structures. The models and boundary conditions are

defined. The meshes for these models are discussed and sample illustrations

given.

4.1 Models Defined

Two hundred and seventy five finite element models were generated. These

included all combinations of the parameters;

I
- = .25, .5, 1. 2, 4
r
t
- = .0125. .025, .05, .1, .2
r
= -75' -60', -450, -300, -15 °, 00. 150, 300, 450, 600, 750

Each of the two hundred seventy five had to be tip loaded, first with a unit

shear load and solved, and then with a unit pure bending moment and solved.

Five hundred and fifty solutions were generated. (See the sample schematic of

varying ( ) ratio and varying cone angle 0 in Fig. 15.)
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hr = 4.0

I I
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I I
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e= 0 15 30 45 60 75

I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

I I I

I I=jujy j
hr = 0.25

Fig ~5 Varying conical sections schematic.
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4.2 Boundary Conditions

For an illustration of the cantilevered conical section with loading applied.

see Fig. 16. It is important to note that all models were fixed at the left end. The

right end was constrained to remain infinitely rigid by restricting the degrees of

freedom for these end nodes. Because the free end was constrained rigid, the load

acted as if it was uniformly distributed to each node thus ensuring no distorted

loading or local deformations. This is essential in order to obtain the proper

displacements and thus flexibility coefficients. (See APPENDIX D for sample

input data for ANSYS displacement constraints and rigid region constraints.)

4.3 Mesh Analysis

All models were generated using the ANSYS mesh generation procedure.

In general, it is important to keep the individual elements of the mesh within

certain dimensional constraints. We can define these constraints as the aspect

ratio, ( -) and the arc angle, 0,. (Refer to Fig. 17 for an illustration of these

parameters.) These constraints are important for any finite element simply

because of the limitations on the finite element shape functions derived from the

particular structural theory. In order to determine the specific limitations on

the aspect ratio and arc angle, meshes of the extreme geometry models ((b) = 4

with cone angle = 00) and ((h) 0.25 with cone angle = 750) were meshed

first varying only arc angle from 30' to 15' and then varying only the aspect

ratio from 15 to 1. The solutions converged to within 0.1% of the coarser mesh

solution. The limits on the mesh aspect ratios were thus established at 0, =

15'°. and ( --) = 6,.. (See Fig. 18 through Fig. 27 for samples of meshesrnC'

used for the solution generatir,, See APPENDIX D for sample ANSYS input

for model geometry and mesh 'ration.)
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V. V.
2ii r1 2

Tmz

Fig. 16. C antilevered conical section with tip loading.
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Y Center at shaft axis

Fig. 17. Flat plate element geometrical constraints.
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Fig. 18. ANSYS miesh with I and o w.>
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1(L'R) 1. 8 = 15

Fig. 19. ANSYS mesh with I~ and 15.
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I1 rL/R) 1 .0 8 = 30

Flig. 20. ANSYS mesh with I~ and a :300.
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Fig. 21. ANSYS miesh with (L) =I and 9 457.
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/

1(L'R) = 1.0 , 8 = 60

Fig. 22. AN SYS mnesh with I . and a9 60'.



51

1(L/R) = 1.0 , 8 = 75

Fig. 23. ANSYS mesh with (-) = and =

r-
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y

.(L/R) =.25 8 =45

Fig. 24. ANSYS mieshi with ( .25 and 0 45'.
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(L.25 . 45

Fig 2.5. A NS YS mies h wi th I L- .5 an d a 4.5.
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Fig. 26. ANSYS miesh with ()2 and B4o



(L/R) = 4 /465

Fig. 27. ANSYS mesh with (L) = 4 and o0 = 45'.
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5. NUMERICAL RESULTS AND DISCUSSION

Ovalization has been demonstrated to be negligible using ANSYS for trans-

verse loading conditions found in turbomachinery. A discussion of these oval-

ization tests is presented. The flexibility coefficients are presented in nondimen-

sionalized tabular and plot form for ease in turbomachinery design and analysis

application. The shell finite element models have been verified by compari-

son with solutions from advanced strength of materials. The satisfaction of the

mathematical flexibility transformation identities is also presented as verification

of the model boundary conditions. A discussion of current methods of including

shear in the closed form beam theory solutions is presented.

Rotor transfer matrix demonstrations were performed on the 600 cone test

piece presented by Beamish et al., (1988) and the Space Shuttle Main Engine

High Pressure Oxidizer Turbopump (SSME HPOTP) as presented by Li (1979).
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5.1 Negligible Ovalization

Based on the ovalization study, three models most likely to ovalize were

modeled and analyzed. The parameters chosen for study were (_) = 4, (1) =

0.0125, and cone angles 0'. 75'. and -750. A maximum load based on the

worst case vibrational displacement of 200 mils (.2 inches) was used. A load

vector based on a linear extrapolation was used to check if the nonlinear anal-

ysis would give the same results as the linear analysis. The load vector was

obtained from multiplying the unit load vector by 200 mils and dividing by the

tip displacement at unit load. The large displacement nonlinear solution option

within ANSYS was selected and each solution converged within three iterations.

The tip and midlength (4) nodal displacements were output. For all three mod-

els, there were no changes in midlength diameters and the tip deflections were

200 mils indicating a linear flexibility throughout this loading range. Because

no ovalization was measured, all 275 models were solved with a linear analysis

with one load step
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5.2 Design Data Generation

The data generated for the models described in the previous section were

nondimensionalized for ease in turbornachinery design and analysis application.

Tables 2 through 4 list the nondimensional flexibility coefficients for cylindrical

sections. The values are listed for varying ( ) and (L) ratios. Tables 5 through

24 also lst the nondimensional flexibility coefficients for conical sections. The

values are listed for varying cone angle 0, and varying ( ) and (L) ratios. Fig-

ures 28 through 47 are plots of the nondimensional flexibilities listed in Tables 5

through 2 4 respectively. The plots may be used for quick interpolation of nondi-

mensional flexibilities. Note for the (aEro = aEr-,) and (oEr 2
9 = bEr 2_o)

tables and plots, that there are negative values. The curves represent the flexi-

bility characteristics dominated by the shear loading. However. for each curve.

the slope is changing and eventually as ( ) increases the flexibility coefficients

will be dominated by the bending moment loading and thus become positive.

Likewise, the flexibility coefficients (bEr 2
6 =Er 2 ) and (93Er3  =Er 3 )

will always be positive because each is uncoupled and represents the flexibility

characteristics of the structure solely due to pure bending. In pure bending,

there is no shei r taken into account. It is important to note for all these nondi-

mensional flexibility plots, that the curves only represent a best fit between the

computational data points. The data points were marked on the plots with

symbols which represent the only true computational data, the curves between

are not computational data. The Tables of the nondimensional flexibilities are

contained herein to give the designer or analyst the option of using a numerical

interpolation scheme of his choice.
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Table 2. Nondimensional Flexibilities (aEr) for Cylindrical

Sections (0 = 0) with Varying (1) and (1) Ratios.

aEr

0.25 -16.3875
0.5 -32.5050

0.0125 1.0 -61.8909
2.0 -98.0523
4.0 10.8891

0.25 -8.01212
0.5 -16.1382

0.025 1.0 -30.7997
2.0 -48.8386
4.0 5.64177

0.25 -3.68059
0.5 -7.88378

0.05 1.0 -15.2192
2.0 -24.1826
4.0 3.12114

0.25 -1.39222
0.5 -3.61497

0.1 1.0 -7.38548
2.0 -11.8026
4.0 1.94488

0.25 -0.354660
0.5 -1.35794

0.2 1.0 -3.35416
2.0 -5.55745
4.0 1.41685
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Table 3. Nondimensional Flexibilities (bEr2 = aEr2 ) for

Cylindrical Sections (0 = 0) with Varying - and 1- Ratios.

t _ bEr2 = aEr2

r r

0.25 0.753797
0.5 3.13300

0.0125 1.0 12.7363
2.0 51.3101
4.0 205.622

0.25 0.370897
0.5 1.54250

0.025 1.0 6.32531
2.0 25.5801
4.0 102.742

0.25 0.184290
0.5 0.754806

0.05 1.0 3.13337
2.0 12.7302
4.0 51.2805
0.25 0.0919208
0.5 0.371620

0.1 1.0 1.54363
2.0 6.32142
4.0 25.5507

0.25 0.0458154
0.5 0.184268

0.2 1.0 0.756213
2.0 3.12746
4.0 12.6917
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Table 4. Nondimensional Flexibilities (i3Er') for Cylindrical

Sections (0~ = 0) with Varying 1 and 1 Ratios.

t I 3Er'

0.25 6.03040
0.5 i 12.5320

0.0125 1.0 25.4725
2.0 51.3100

___________ 4.0 I 102.811

0.25 2.96719
0.5 6.16999

0.025 1.0 12.6506
2.0 25.5801

___________ 4.0 51.3709

0.25 1.47433
0.5 3.01922

0.05 1.0 6.266 73
2.0 12.7301

___________ 4.0 25.6404

0.25 0.735368
0.5 I 1.48648

0.1 1.0 3.08726
2.0 6.32142

___________ 4.0 12.7754

0.25 0.366524
0.5 0.737069

0.2 1.0 1.51242
2.0 3.12745
4.0 6.34587
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Table 5. Nondimensional Flexibilities (aEr) for Conical Sec-

tions with ((!) = .0125 ), Varying 0, and Varying (i) Ratio.

I aEre =aEr-

0.25 -16.4088
0.5 -31.6478

15 1.0 -57.8755
2.0 -93.32054.0 -104.709

0.25 -17.6177
0.5 -33.1231

30 1.0 -58.8090
2.0 -95.4185
4.0 -135.138

0.25 -20.5644
0.5 -37.6571

45 1.0 -65.2536
2.0 -106.495
4.0 -165.270
0.25 -27.1032
0.5 -48.1376

60 1.0 -81.7094
2.0 -134.742
4.0 -221.627

0.25 -45.4020
0.5 -77.6723

75 1.0 -130.452
2.0 -221.181
4.0 -385.649
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Table 6. Nondimensional Flexibilities (aEr) for Conical Sec-

tions with ((!) = .025 ), Varying 0, and Varying ( ) Ratio.

r aEr., = aEr-e

0.25 -8.02446
0.5 -15.7143

15 1.0 -28.8052
2.0 -46.4997
4.0 -52.1826

0.25 -8.62022
0.5 -16.4428

30 1.0 -29.2559
2.0 -47.5162
4.0 -67.3361

0.25 -10.0659
0.5 -18.6749

45 1.0 -32.4185
2.0 -52.9506

1 4.0 -82.2487
0.25 -13.2575
0.5 -23.7970

60 1.0 -40.4472
2.0 -66.7359
4.0 -109.971
0.25 -22.0413
0.5 -37.8917

75 1.0 -63.6207
2.0 -107.963
4.0 -189.506
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Table 7. Nondimensional Flexibilities (aEr) for Conical Sec-

tions with ((!) = .05 ), Varying 0, and Varying (i) Ratio.
r

O aEr+o = aEro

0.25 -3.68986
0.5 -7.67802

15 1.0 -14.2391
2.0 -23.0452
4.0 -25.8297

0.25 -3.97299
0.5 -8.03363

30 1.0 -14.4451
2.0 -23.5077
4.0 -33.3074

0.25 -4.64925
0.5 -9.11334

45 1.0 -15.9531
2.0 -26.0858
4.0 -40.5182

0.25 -6.12105
0.5 -11.5506

60 1.0 -19.7273

2.0 -32.5355
4.0 -53.6437

0.25 -10.0532
0.5 -17.9039

75 1.0 -29.9758
2.0 -50.6176
4.0 -89.4359
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Table 8. Nondimensional Flexibilities (aEr) for Conical Sec-

tions with ((!) = .1 ), Varying 0, and Varying ( ) Ratio.

0 aEr+, = aEr-

0.25 -1.40197
0.5 -3.52347

15 1.0 -6.91415
2.0 -11.2706
4.0 -12.5724
0.25 -1.52682

0.5 -3.69121
30 1.0 -6.99747

2.0 -11.4472
4.0 -16.1763

0.25 -1.81070
0.5 -4.18548

45 1.0 -7.67514
2.0 -12.5752
4.0 1 -19.4612

0.25 -2.40248
0.5 -5.26514

60 1.0 -9.31562
2.0 -15.3136

_ 4.0 -25.0916

0.25 -3.89256
0.5 -7.83074

75 1.0 -13.2275
2.0 -21.9353
4.0 -38.3099
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Table 9. Nondimensional Flexibilities (aEr) for Conical Sec-

tions with (( ) = .2 ), Varying 0, and Varying (i) Ratio.

0 aEr+e = aEr -

0.25 -0.365955
0.5 -1.32964

15 1.0 -3.14373
2.0 -5.33993
4.0 -5.87906

0.25 -0.422952
0.5 -1.40656

30 1.0 -3.17270
2.0 -5.37712
4.0 -7.53184

0.25 -0.537534
0.5 -1.60990

45 1.0 -3.44683
2.0 -5.78792
4.0 -8.84485

0.2! -0.755183
0.5 -2.02251

60 1.0 -4.06754
2.0 -6.73290
4.0 -10.7921
0.25 -1.26172
0.5 -2.89676

75 1.0 -5.25712
2.0 -8.43630
4.0 -13.9820
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Table 10. Nondimensional Flexibilities (bEr. 0 = aEr2 o ) for

Conical Sections with ((f) = .0125 , Varying 0, and Varying

( ) Ratio.

0 bEr?, =aEr2

0.25 5.14583
0.5 11.5685

15 1.0 27.3150
2.0 66.8893
4.0 163.402

0.25 11.1020
0.5 22.9152

30 1.0 47.6992
2.0 99.7620
4.0 207.418

0.25 22.1019
0.5 43.7465

45 1.0 86.0667
2.0 169.148
4.0 332.995

0.25 50.8352
0.5 97.8549

60 1.0 187.314
2.0 360.488
4.0 700.807

0.25 192.320
0.5 364.804

75 1.0 697.226
2.0 1353.41
4.0 2658.37
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Table 11. Nondimensional Flexibilities (bEr~0 = aEr e) for

Conical Sections with ((t) = .025 , Varying 0, and Varying

(!) Ratio.

_ bEr_2 -cEr 2

0.25 2.50129
0.5 5.70966

15 1.0 13.5461
2.0 33.2760
4.0 81.5277

0.25 5.39105
0.5 11.3066

30 1.0 23.6282
2.0 49.5516
4.0 103.339
0.25 10.7217
0.5 21.5463

45 1.0 42.5389
2.0 83.8238
4.0 165.600

0.25 24.5792
0.5 47.9520

60 1.0 92.0964
2.0 177.794
4.0 347.376

0.25 91.5806
0.5 175.474

75 1.0 336.552
2.0 657.308
4.0 1305.33
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Table 12. Nondimensional Flexibilities (bEr_0 = aET2 Q) for

Conical Sections with ((b) = .05 , Varying 0, and Varying

( ) Ratio.

z 2
bEro = aEr2

r I-

0.25 1.13353
0.5 2.76602

15 1.0 6.66355
2.0 16.4650
4.0 40.5201
0.25 2.42769
0.5 5.46264

30 1.0 11.5807
2.0 24.4094
4.0 51.1296

0.25 4.81959
0.5 10.3677

45 1.0 20.7318
2.0 [ 41.0336
4.0_ 81.4468
0.25 10.9988
0.5 22.8371

60 1.0 44.3273
2.0 85.9235
4.0 168.983

0.25 39.9720
0.5 80.3875

75 1.0 155.317
2.0 304.678
4.0 614.785
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Table 13. Nondimensional Flexibilities (bEr_® = aEr_2) for

Conical Sections with (( ) = .1, Varying 0, and Varying (;)

Ratio.

0 bEr+2 , = aEr2

0.25 0.407040

0.5 1.26040
15 1.0 3.21266

2.0 8.05920
4.0 19.9812

0.25 0.851053
0.5 2.45556

30 1.0 5.52912
2.0 11.8138
4.0 24.9129

0.25 1.69223
0.5 4.61720

45 1.0 9.77256
2.0 19.5604
4.0 39.0475
0.25 3.86121
0.5 9.98283

60 1.0 20.3417
2.0 39.7651
4.0 78.6287

0.25 13.5442
0.5 32.7980

s5 1.0 65.4812
2.0 128.894
4.0 262.191
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Table 14. Nondimensional Flexibilities (bEr _ = aEr2_o) for

Conical Sections with ((f) .2 Varying O, and Varying (1)

Ratio.

0 r bEr- 0 = aEr'

0.25 0.0820812
0.5 0.471078

15 1.0 1.46323
2.0 3.85164
4.0 9.7002-.

0.25 0.156430
0.5 0.871381

30 1.0 2.44760
2.0 5.49738
4.0 11.7580

0.25 0.333677
0.5 1.60694

45 1.0 4.20855
2.0 8.80371
4.0 17.7554

0.25 0.824413
0.5 3.38390

60 1.0 8.33288
2.0 16.8576
4.0 33.5125

0.25 2.92445
0.5 16.1182

75 1.0 23.3119
2.0 46.7298

1 4.0 94.4523
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Table 15. Nondimensional Flexibilities (aEr 2 = bEr2 .) for

Conical Sections with ((t) = .0125 , Varying O, and Varying

( ) Ratio.

9 aEr_ =bEr2_

0.25 -3.35914
0.5 -4.81764

15 1.0 -4.03825
2.0 4.52193
4.0 26.9966

0.25 -7.95148
0.5 -12.0540

30 1.0 -14.7028

2.0 -12.7436
4.0 -5.68461

0.25 -15.0169
0.5 -21.5003

45 1.0 -25.5206
2.0 -25.0119
4.0 -21.3568

0.25 -29.8036
0.5 -38.6405

60 1.0 -42.4161

2.0 -41.2734
4.0 -38.2425

0.25 -77.3563
0.5 -85.9213

75 1.0 -85.6796
2.0 -82.0337
4.0 -78.6086
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Table 16. Nondimensional Flexibilities (aEr 2e = bEr 2 .) for

Conical Sections with ((t) = .025 , Varying 0, and Varying

(1) Ratio.

0 aEr2  
- bEr2

0.25 -1.62549
0.5 -2.38807

15 1.0 -1.99987
2.0 2.27569
4.0 13.5125
0.25 -3.85713
0.5 -5.96493

30 1.0 -7.29022
2.0 -6.31742
4.0 -2.80081

0.25 -7.29076
0.5 -10.6205

45 1.0 -12.6356
1 2.0 -12.3952

4.0 -10.5965

0.25 -14.4526
0.5 -19.0011

60 1.0 -20.9050
2.0 -20.3661
4.0 -18.9281

0.25 -37.0794
0.5 -41.5127

75 1.0 -41.4442
2.0 -39.7961
4.0 -38.5058
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Table 17. Nondimensional Flexibilities (aEr+ = bEr2 e) for

Conical Sections with ((f) = .05 , Varying 0, and Varying

(,) Ratio.

0 aEr2e = bEr2_

0.25 -0.707560
0.5 -1.14735

15 1.0 -0.963623
2.0 1.17096
4.0 6.78615

0.25 -1.70794
0.5 -2.87817

30 1.0 -3.56147
2.0 -3.08032
4.0 -1.33143

0.25 -3.25015
0.5 -5.11992

45 1.0 -6.15827
2.0 -6.04743
4.0 -5.16653

0.25 -6.44910
0.5 -9.09183

60 1.0 -10.0791
2.0 -9.82485
4.0 -9.15410

0.25 -16.2538
0.5 -19.1525

75 1.0 -19.1269
2.0 -18.3326
4.0 -17.9714
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Table 18. Nondimensional Flexibilities (aEr o = bEr2 ) for

Conical Sections with ((t) = .1, Varying 0, and Varying ( )

Ratio.

0 aEr +E = bEr2

0.25 -0.207751
0.5 -0.479667

15 1.0 -0.430284
2.0 0.635722
4.0 3.44023

0.25 -0.551703
0.5 -1.25374

30 1.0 -1.67476
2.0 -1.44016
4.0 i -0.571204

0.25 -1.09435
0.5 -2.24837

45 1.0 -2.88920
2.0 -2.84164
4.0 -2.40827

0.25 -2.21721
0.5 -3.96207

60 1.0 -4.62488
2.0 -4.50137
4.0 -4.17636
0.25 -5.47422
0.5 -7.86734

75 1.0 -8.03047
2.0 -7.59648
4.0 -7.44044
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Table 19. Nondimensional Flexibilities (aEr+. = bEr2 .) for

Conical Sections with ((f) .2, Varying 0, and Varying ( )

Ratio.

2 1
E) r aEr2 e = bEr2 ,

0.25 0.0071072
0.5 -0.107828

15 1.0 -0.133075
2.0 0.381569
4.0 1.78054

0.25 -0.0517861
0.5 -0.375835

30 1.0 -0.687045
2.0 -0.605333
4.0 -0.174387

0.25 -0.168031
0.5 -0.720708

45 1.0 -1.20388
2.0 -1.22537
4.0 -1.00963

0.25 -0.426835
0.5 -1.29113

60 1.0 -1.87001
2.0 -1.85203
4.0 -1.68201

0.25 -1.13910
0.5 -2.39961

75 1.0 -2.83098
2.0 -2.61920
4.0 -2.47247
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Table 20. Nondimensional Flexibilities (/3Er') for Conical

Sections with ((!) =.0125 ,Varying 0. and Varying -~Ratio.

0 i3Er. = IOEr>

0.25 7.14700
0.5 13.5022

15 1.0 23.2778
2.0 35.7056
4.0 47.5998
0.25 12.6024
0.5 21.7229

30 1.0 32.9972
2.0 43.5092

_________ 4.0 50.4334

0.25 28.3401
0.5 44.4925

45 1.0 60.5462
2.0 72.0681

_________ 4.0 77.9095

0.25 84.1246
0.5 118.426

1 60 1.0 144.894
2.0 159.603

_________ 4.0 165.637

0.25 459.849
I 0.5 557.759

75 1.0 611.539
2.0 635.678

4.0 644.932
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Table 21. Nondimensional Flexibilities (3Er3 ) for Conical

Sections with ((!) = .025, Varying 9, and Varying 1 Ratio.
r r

0 _E-r' = /3Er 3

0.25 3.50333
0.5 6.64343

15 1.0 11.5468
2.0 17.7759
4.0 23.7601

0.25 6.13577
0.5 10.6836

30 1.0 16.3384
2.0 21.6171
4.0 25.1346

0.25 13.7237
0.5 21.8517

45 1.0 29.9033
2.0 35.7143
4.0 38.7508

0.25 40.5056
0.5 57.9004

60 1.0 71.1896
2.0 78.7122
4.0 82.1097

0.25 218.002
0.5 267.920

75 1.0 295.104
2.0 308.752
4.0 316.701
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Table 22. Nondimensional Flexibilities (i3Er') for Conical

Sections with ((f) = .05 , Varying 0, and Varying . Ratio.

I
E) = Er 3_

0.25 1.70392
0.5 3.23745

15 1.0 5.70020
2.0 8.81801
4.0 11.8266

0.25 2.87902

0.5 5.16903
30 1.0 8.01938

2.0 10.6646
4.0 12.4495

0.25 6.27776

0.5 10.4957
45 1.0 14.5735

2.0 17.4931
4.0 19.0701

0.25 18.1984
0.5 27.4899

60 1.0 34.2474
2.0 38.0483
4.0 39.9561

0.25 94.8717

0.5 122.469
75 1.0 136.188

2.0 143.171
4.0 149.201
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Table 23. Nondimensional Flexibilities (3Er 3 ) for Conical

Sections with ((!) = .1 Varying 0, and Varying , Ratio.

0 O.jEr' o = Er3_

0.25 0.797174

0.5 1.56152
15 1.0 2.78250

2.0 4.34747
4.0 5.85535

0.25 1.19742
0.5 2.40369

30 1.0 3.85445
2.0 5.18680
4.0 6.08543

0.25 2.39152
0.5 4.73766

45 1.0 6.88336
2.0 8.35940
4.0 9.15980
0.25 6.57586
0.5 12.0412

60 1.0 15.7164
2.0 17.6314
4.0 18.6126
0.25 32.2798
0.5 49.8608

75 1.0 57.4500
2.0 60.6482
4.0 63.6868
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Table 24. Nondimensional Flexibilities (flEr3 ) for Conical

Sections with ((!) = .2, Varying 0, and Varying - Ratio.

0 flEr'e = I#Er 3_

0.25 0.356757
0.5 0.726522

15 1.0 1.33021
2.0 2.11661
4.0 2.87020

0.25 0.418580
0.5 0.991108

30 1.0 1.76059
2.0 2.44602
4.0 2.89589

0.25 0.662584
0.5 1.77247

45 1.0 3.00468
2.0 3.78917
4.0 4.18643

0.25 1.59028
0.5 4.18545

60 1.0 6.46271
2.0 7.50258
4.0 7.95741

0.25 7.14131
0.5 15.4369

75 1.0 20.4806
2.0 22.0550
4.0 22.9947
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Fig. 28. Nondimensional flexibility plots (aEr) for coni-
cal sections with ()=0.0125, varying e and varying
ratio.
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Fig. 29. Nondimensional flexibility plots (aEr) for conical
sections with ()=0.025. varying 9 and varying ()ratio.
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Fig.:30. Nondimensional flexibility plots (a Er) for conical
se-ticods with ()0.05. varying 9 and varying (i) ratio.
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Fig. 31. Nondimensional flexibility plots (aEr) for conical
sections with ()=0.1, varying 6 and varying ()ratio.
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Fig. 32. Nondimensional flexibility plots (a Er) for conical
sections with ()=0.2, varying 9 and varying ()ratio.
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Fig. 33. Nondimensional flexibility plots (bEr2, =~2,

for conical sections with ()=0.0125. varying 6 and vary-
ing ()ratio.
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Fig. 34. Nondimensional flexibility plots (bErn = aE9r)
for conical sections with ()=0.025, varying 9 and varying
r1) ratio.
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Fig. 35. Nondimensional flexibility plots (bEr2 =kE.
for conical sections with (L) = 0.0. varying 6 and varying

()ratio.
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Fig. 36. Nondimensional flexibility plots (bEr'O = aE9r
for conical sections with o. i,.1 varying 0 and varying

()ratio.
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Fig. 37. Nondimensional flexibility plots (bEr'n a= '.

for conical sections with ()0.2, varying 9 and varying
()ratio.
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Fig. 38. Nondimensional flexibility plots (aErl bEr 2 4

for conical sections with ()=0.0125, varying 6 and vary-
ing ()ratio.
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Fig. 39. Nondimensional flexibility plots (arEr', 6 Er'2 ,)

for conical sections with ()=0.025, varying 8 and varying
()ratio).
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Fig. 40. Nonidimensional flexibility plots (0,Er 2 
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Fig. 41. Nondimensional flexibility plots (aEr2 bEr2)

for conical sections with (i) = 0.1, varying 9 and varying
()ratio.
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Fig. 42. Nondimensional flexibility plots (aEr2+ bEr 2 j
for conical sections with ()=0.2, varying 0 and varying

~)ratio.
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ratio.
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Fig. 45. Nondimensional flexibility plots ( 3Er 3 ) for con-
ical sections with (i) =0.05, varying 9 and varying (i)
ratio.
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Fig. 46. Nondiznensional flexibility plots (,3Er 3) for con-
ical sections with () 0.1, varying 0 and varying()
ratio.
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Fig. 47. Nondimensional flexibility plots (13Er 3) for con-
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ratio.
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5.3 Model Verification

With any finite element computational analysis, the model must be veri-

fied in some manner to ensure acceptable computational results. The two most

common methods are to try and reproduce experimental data or try and repro-

duce some theoretical closed form solution data. The finite element models used

herein were first verified by comparison to results of theoretical closed form so-

lutions. The models were then verified with experimental data on the 600 cone

test piece described by Beamish et al., (1988). This is discussed in the rotor

transfe- matrix demonstration of section 5.5.1. For additional verification, the

mathematical conical flexibility transformations of equations (11) through (14)

were fully satisfied.

5.3.1 Cantilevered Cylinders

Six structures of cylindrical cross section, constant midwall radius (r = 1.0

inch), Young's Modulus of 30 x 106 psi, shear modulus of 11.54 x 10 6 psi, and

with varying (.) and (-) ratios as listed in Table 25 were modeled with the

previously described finite element procedure. The radial (Yr,) and rotational

(0,) deflections for a unit shear load were calculated by the closed form ad-

vanced strength of materials beam theory equations found in APPENDIX A.

These values were tabulated for comparison with ANSYS generated solutions in

Table 25. One important preliminary concern was to observe how the ANSYS

finite element models would behave for the relatively thick shells of (1) = 0.2.

Normally, thin plates or shells based on Kirchhoff adhoc assumptions (described

previously) have the limitation of (t) > .05. However, as listed in Table 25, for

(r) 20 the percentage differences for (Y,,) and (0,) are only 1.412 and 1.583

respectively. For these structures, the A.S.M. solutions are expected to be close
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Table 25. Cantilevered Cylinder Displacements Comparison of

A.S.M. method with F.E.M.

Beam Theory Shell Theory

A.S.M. S.F.E.M. Difference

20 .0125 2.3049 E-3 2.3209 E-3 .689
10 .0125 3.0363 E-4 3.0670 E-4 1.001

1 .0125 2.3530 E-6 2.4876 E-6 5.411
20 .2 1.4247 E-4 1.4451 E-4 1.412
10 .2 1.8710 E-5 1.9035 E-5 1.707

1 .2 1.3764 E-7 1.3701 E-7 -.460

Beam Theory Shell Theory
A.S.M. S.F.E.M. Difference

20 .0125 1.6976 E-4 1.7139 E-4 .951
10 .0125 4.2440 E-5 4.2848 E-5 .952
1 .0125 4.2440 E-7 4.2454 E-7 .033

20 .2 1.0505 E-5 1.0674 E-5 1.583
10 .2 2.6263 E-6 2.6651 E-6 1.456

1 .2 2.6263 E-8 2.5207 E-8 -4.189
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to exact. Thus, the thick shell finite element model was accurate. However, it

must be noted that the out-of-plane additional flexibilities admitted by these

finite elements (discussed previously) allow even the thick shells to be modeled

accurately. As expected, the thin shells for ( ) = 20 had even better results

of 0.689% and 0.951% differences of the (Yr.) and (0,,) displacements respec-

tively. It should also be noted at this time that for very small (-) ratios, neither

A.S.M. closed form solutions nor shell finite elements will be accurate due to the

theory geometrical limitations. For these geometries, three dimensional solid

isoparametric brick elements based on elasticity theory should be used. The

limits on the very small (L) ratios have not been established. However, for the

(1) and (t) ratios used in this work with (1) always greater than (t), the shell

elements with in-plane and out-of-plane considerations are quite accurate.

Beam theory closed form solutions were generated for the complete set

of model geometries for cylindrical sections. The nondimensional flexibilities

(bEr 2 = aEr2 ) are listed in Table 26. The nondimensional flexibilities (3Er')

are listed in Table 27. The beam theory closed form solutions are plotted to-

gether with the S.F.E.NI. solutions from tables 3 and 4 on figures 48 through

57. For pure bending, the beam theory closed form solutions are expected to be

close to exact. It can be seen by the comparison of these plots that the ANSYS

models are very accurate.
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Table 26. Beam Theory Closed Form Nondimensional Flexi-

bilities (bEr2 = aEr2) for Cylindrical Sections (0 = 0) with

Varying (1) and (1) Ratios.

, bEr2 = aEr 2

0.25 0.795744

0.5 3.18298
0.0125 1.0 12.7319

2.0 50.9276
4.0 203.711

0.25 0.397826
0.5 1.59130

0.025 1.0 6.36521
2.0 25.4608
4.0 101.843

0.25 0.198820
0.5 0.795278

0.05 1.0 3.18111
2.0 12.7245
4.0 50.8978

0.25 0.0992239
0.5 0.396895

0.1 1.0 1.58758
2.0 6.35033
4.0 25.4013

0.25 0.0492435
0.5 0.196974

0.2 1.0 0.787896
2.0 3.15159
4.0 12.6063
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Table 27. Beam Theory Closed Form Nondimensional Flexid-

bilities (flEr') for Cylindrical Sections (09 = 0) with Varying

(i) and ()Ratios.

r. r ~ jEr3

0.25 6.36595
0.5 12.7319

0.0125 1.0 25.4638
2.0 50.9276

___________ 4.0 101.855

0.25 3.18260
0.5 6.36521

0.025 1.0 12.7304
2.0 25.4608
4.0 50.9217
0.25 1.59056
0.5 3.18111

0.05 1.0 6.36223
2.0 12.7245

___________ 4.0 25.4489

0.25 0.793791
0.5 1.58758

0.1 1.0 3.17516
2.0 6.35033
4.0 12.7007
0.25 0.393948
0.5 0.787896

0.2 1.0 1.57579
2.0 3.15159L4.0 6.30317
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Fig. 48. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (bEr' = aEr') for cylindrical sections (0
0) with varying ()ratios and () .0125.
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Fig. 49. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (bEr' = a Er') for cylindrical sections (8
0) with varying (L) ratios and (9=.025.
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Fig. 50. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (bEr 2 = aEr ' ) for cylindrical sections (0 =
0) with varying ( ) ratios and ($) = .05.
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Fig. 51. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (bEr 2 = aEr 2 ) for cylindrical sections (0 =
0) with varying (L) ratios and ( ) = .1.
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Fig. .52. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (bEr 2 = aEr 2 ) for cylindrical sections (8
0) with varying (L) ratios and ( ) = .2.
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Fig. 53. Beam theory closed form nondimensional flex-
ility plots compared to finite element nondimensional

flexibility plots (i3Er3) for cylindrical sections (0 0) with
varying ()ratios and () .0125.
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Fig. .54. Beam theory closed form nondimensional flex-
iblity plots compared to finite element nondimensional
flexiblity plots (J3Er 3) for cylindrical sections (0 0) with
varying ()ratios and (1) =.025.
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Fig. 55. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondiinensional
flexibility plots (,3Er 3 ) for cylindrical sections (0 = 0) with
varying (lratios and ()=.05.
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Fig. 56. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (i3Er 3) for cylindrical sections (8 = 0) with
varying ( ) ratios and ( ) = .1.
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Fig. 57. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondirnensional
flexibility plots (3 Er 3) for cylindrical sections (8 = 0) with
varying (L ) ratios and ()=.2.
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5.3.2 Conical Flexibility Transformations

An additional method of model verification is the satisfaction of the math-

ematical flexibility transformations of APPENDIX C,

a, = ap - 1(bp) + 1'(a3p) - 1(ap)

b, = i(3,,) - b,,
(C10)

Cn=1(3,,) - '

,3, = 3P

or more specifically for an axisymmetric conical structure,

a ap(11)

bn= ap (12)

a= bp (13)

!3, =3p (14)

These mathematical expressions would not be satisfied if there were any bound-

ary condition errors in the models. This is explained by the energy theorems of

Betti and Maxwell (Tuma (1969)). All of the flexibilities of the 275 models were

input into the above equations of (C10) and (11) through (14). All mathematical

identities were satisfied.
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5.4 Including Shear in Beam Theory

Different practices accounting for shear are currently being used in rotor-

dynamic transfer matrix programs. Some do not include any shear effects at

all, and most use a constant shear form factor, K, = 0.75. Neither of these

practices is adequate over the full range of section geometries and can result

in large percentage errors in the flexibility coefficient (aEr). Table 28 lists

the nondimensional flexibilities (aEr) of cylindrical sections for the closed form

beam theory solutions using the constant shear form factor. Table 29 lists the

nondimensional flexibilities (aEr) of cylindrical sections for the closed form so-

lutions with the improvements of advanced strength of materials (A.S.M.). (K,

is determined by equation (A9)). Table 2 (discussed previously) lists the nondi-

mensional flexibilities (aEr) of cylindrical sections determined by the shell finite

element analysis. Figures 58 through 62 illustrate the large percentage errors

of assuming a constant K, = 0.75. It can be seen from these plots that the

assumption of a constant shear form factor can cause very significant errors in

flexibilities. When modelling cylindrical beam sections for rotor dynamics analy-

sis. The A.S.M. closed form solution should always be used. However, the closed

form solution using A.S.M. is also not exact. Whether the shell flexibilities are

closer to the real values than the A.S.M. method is unproven for these cylindrical

sections. However, it is assumed that the shell flexibilities for the thin sections

are more accurate than the A.S.M. flexibilities. Because the nature of the curves

don't change appreciably with thickness, it is further assumed that the shells

are more accurate over the entire range of section geometries contained in this

work.
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Table 28. Beam Theory Closed Form Nondimensional

Flexibilities (aEr) with (K. = .75) for Cylindrical Sec-

tions (0 = 0 ) with Varying ( ) and (1) Ratios.

. ! aErr r

0.25 -10.9689
0.5 -21.5399

.0125 1.0 -39.8968
2.0 -54.3298
4.0 95.0510

0.25 -5.48444
0.5 -10.7700

.025 1.0 -19.9486
2.0 -27.1669
4.0 47.5096

0.25 -2.74220
0.5 -5.38505

.05 1.0 -9.97482
2.0 -13.5874
4.0 23.7230
0.25 -1.37113
0.5 -2.69265

.1 1.0 -4.98840
2.0 -6.80164
4.0 11.79803

0.25 -.685596
0.5 -1.34657

.2 1.0 -2.49617
2.0 -3.41654
4.0 5.77326
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Table 29. Beam Theory Closed Form Nondimensional

Flexibilities (aEr) for Cylindrical Sections (0 = 0) with

Varying (1) and (1) Ratios.

r r
t z_ aEr

0.25 -15.4535

0.5 -30.5091
0.0125 1.0 -57.8353

2.0 -90.2067
4.0 23.2971

0.25 -7.68799
0.5 -15.1771

0.025 1.0 -28.7628
2.0 -44.7953
4.0 12.2528

0.25 -3.80561
0.5 -7.51181

0.05 1.0 -14.2283
2.0 -22.0945
4.0 6.70889

0.25 -1.86516
0.5 -3.68071

0.1 1.0 -6.96452
2.0 -10.7539
4.0 3.89354

0.25 -0.896419
0.5 -1.76822

0.2 1.0 -3.33946
2.0 -5.10312
4.0 2.40010
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Fig. 58. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (aEr) for cylindrical sections (e = 0) with
varying ( ) ratios and ( .) = 0125.
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Fig. 59. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (aEr) for cylindrical sections (e = 0) with
varying (_) ratios and ( P .025.
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Fig. 60. Beam theory closed fornm nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (a Er) for cylindrical sections (e = 0) with
varying ()ratios and () .05.
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Fig. 61. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
fleXibility plots (aEr) for cylindrical sections (0 = 0) with
varying ( ratios and (_) = .1.
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Fig. 62. Beam theory closed form nondimensional flex-
ibility plots compared to finite element nondimensional
flexibility plots (aEr) for cylindrical sections (e = 0) with
varying ( ) ratios and ( ) .2.
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5.5 Rotor Transfer Matrix Demonstrations

The impact of modeling conical sections with the shell flexibility coefficients

in place of the stepped discrete beam flexibility coefficients is significant. Two

models were picked to demonstrate the impact of using shell elements in place

of beam elements. The first modeled was the 600 cone test piece of Beamish

et al., (1988). The fundamental free-free natural frequency was determined and

the mode shape plotted.

The second transfer matrix demonstration was performed on the Space

Shuttle ,lain Engine High Pressure Oxidizer Turbopump (SSME HPOTP). The

model station data was as reported in Li (1979). The SSME HPOTP was

modeled first using beam element and second using the new shell element data

contained in this thesis work. Campbell diagrams were then plotted for both

runs. The critical frequencies of the two methods were then compared. A

representative mode shape was also plotted for comparison.
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5.5.1 600 Cone Test Piece

The 60' cone test piece of Beamish et al., (1988) is illustrated in Fig. 63. The

experimental test fundamental mode natural frequency was 788 hertz. Beamish

et al., (1988) reported 3231 hertz when modeled with infinite stepped beams and

791 hertz when modeled with shell flexibilities by the frequency method. For this

report, the cone was first modeled with three stepped discrete A.S.M. beams as

shown in Fig. 64. The station data was input to the Kelly (1989) transfer matrix

rotordynamic analysis program. The fundamental first mode natural frequency

by this stepped beam method was 2378 hertz. The cone was then modeled

with the new shell flexibility coefficients. The shell flexibility coefficients were

obtained by interpolating directly off the plots of design data figures 28 through

47. The station data was again input to the Kelly (1989) program but with the

new shell flexibility coefficients. The fundamental natural frequency by this shell

element transfer matrix method was 734 hertz. The corresponding fundamental

mode shapes for both methods along with the test mode shape of Beamish et

al., (1988) are plotted in Fig. 65. There are large differences between the natural

frequencies predicted using discrete beams and the natural frequencies predicted

using the shell element data of this report. This shows that the beam modeling

is inadequate for conical shell sections.
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Fig. 63. 600cone test piece with dimensioning.
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Fig. 64. Three stepped beam model of the 600 cone test
piece.
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Fig. 6.5. Cone test piece fundamental mode shape. (Test
frequency = 788 Hz. Stepped beams frequency = 2379
Hz. Shell element transfer matrix method frequency =
734 Hz.)
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5.5.2 Space Shuttle Main Engine High Pressure

Oxidizer Turbopump (SSME HPOTP)

The SSME HPOTP illustrated in Fig. 66 was modeled using the station

data as reported in Li (1979). It was first modeled as A.S.M. beam elements

input to the Kelly (1989) program. The model was run for eight different rotor

running speeds as shown by the datq points of the Campbell diagram of Fig. 67.

The SSME HPOTP was then modeled with the cylindrical shell flexibilities

interpolated off the plots of figures 48 through 62. The model was run for

the same eight rotor running speeds as the previous beam elements model. A

Campbell diagram was plotted for these runs as shown in Fig. 68. In Table 30,

the critical speeds are listed as predicted by both models. It is important to

note, for the low natural frequencies, no significant difference between the two

methods. However, it is very important to note that as shown in sections 5.3

and 5.4, there are no significant differences between the A.S.M. flexibilities and

S.F.E.M. flexibilities for cylindrical sections. Both models here are based on the

Li (1979) station data. Li (1979) had reduced the conical sections to cylindrical

sections. If the SSME HPOTP was modeled with conical sections as conical

sections with the shell flexibilities, differences in predicted critical speeds would

be expected. However, the impact on the predicted critical speed for this specific

engine using S.F.E.M. in place of the beams has not been determined. The mode

shapes of the 9,286 rpm critical speed are plotted for both the A.S.M. and the

shell finite element transfer matrix methods on Fig. 69. Again, for the cylindrical

sections and lower critical speeds, the A.S.M. method is quite accurate.
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MI',',

Fig. 66. Space Shuttle Main Engine High Pressure Oxi-
dizer Turhopump Assembly (SSME HPOTP).
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Fig. 67. Campbell diagram for the A.SMN. method.
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Fig. 68. Campbell diagram for the shell element transfer
matrix method.
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Table 30. SSME HPOTP Critical Speeds Comparison

between the A.S.M. Method and the Shell Element

Transfer Matrix Method.

Beam Theory Shell Theory
Critical A.S.M. S.E.T.M.

Speed Critical Critical

Critical Speed Speed
(rpm) (rpm)

1 9,286 9,286

2 10,000 10,000

3 1 11,116 10,870

I 4 11,785 11,786
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Fig. 69. SSME HPOTP 9000 rpm mode shape.
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6. CONCLUSION

Design data in tabular and plot form were developed using shell finite ele-

ments. The design data are in nondimensionalized form for ready and easy use

by turbomachinery design engineers and analysts. The ovalization of thin and

thick-walled cylindrical and conical engine sections was determined to have a

negligible effect on rotordynamics applications. The nondimensionalized design

data generated are functions of conical section axial length, small end radius.,

wall thickness, cone angle and Young's modulus of elasticity. The nondimension-

alized parameters of these sections cover the complete range of rotors, casings,

and housings used throughout the turbomachinery industry. The design data

are presented in the form of flexibility coefficients which should be input to the

transfer matrix analysis. The need for these flexibility coefficients to be used in

the current day transfer matrix computer programs has been demonstrated.

It is highly recommended that these design data be incorporated into the

existing computer codes for transfer matrix analysis. The computer codes should

ilso be modified to include a numerical interpolation scheme to generate flexibil-

ities which lie between the tabulated computational design data points contained

herein. Because the closed form advanced strength of materials beam theory is

quite accurate for many cylindrical geometries, the computer codes should be

modified to allow the code to choose between using the A.S.M. beam closed form

or the new shell flexibility design data. With these design data shell flexibilities

included in the transfer matrix analysis, the accuracy and range of application

for turbomachinery is greatly improved.
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APPENDIX A

Derivation of Equations (1) and (2)

Referring to the general shaft element of Fig. 1, the load-displacement rela-

tionships can be developed. By first summing forces in the y direction,

Vi- I-Vi=0 , 1I =ViI (A1)

and by summing moments about the right end,

Hi = -Ii-, - Ti-l/ (A2)

By solving for the radial displacement at the right end,

Yj5 = -I --r- Oi-11 - Mi(fyo) - Vi(f.Y) (A3)

and for the angular displacement at the right end,

Oi = i- - M(fU9 ) - V i(f o) (A4)

By substituting (Al) and (A2) into (A3) and (A4) respectively,

Yz = Y'-1 -- Oi-1l +t -VI,-l(fYo) + ,V-1l(fy) - V, -xiUY) (.45)

Oi = 01 - Jii-(f 0o) - i-1(foo) - V -1 (fey) (A6)

where f.0 is defined as the flexibility of the structure for the radial deflection

under bending moment loading. fuy is defined as the flexibility of the structure

for the radial deflection under shear loading. f,4 is defined as the flexibility of

the structure for the rotational deflectior iindcr bending moment loading. foy
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is defined as the flexibility of the structure for the rotational deflection under

shear loading.

Assembling equations (Al), (A2), (A5) and (A6) into matrix form to be used in

computational analysis, equation (2) of the main text is derived,

Ii 1 fo l(fYo) l - foyy 0i-1

1 fee l(fee) - fey 1 (2)

{ ?0 0 1 i _

Now, by defining the transfer matrix flexibility coefficients as;

a = l(fyo) - fyy

b = fyo
(A 7)

= l(fee) - fey

3 = foe

We can by substitution show the general form of the field transfer matrix in

terms of the defined flexibility coefficients which is equation (1) of the main

text,

9i 0 1 3 a 0i-i
.tIi 0 0 1 ii 1 )i-

{ }0 0 0 -

Assembly of Equation (3)

For the Timoshenko beam element, the flexibility equations derived by ad-

vanced strength of materials are;

12ly 8 = fe y =-E
2E1

13__ 1
f3 E =A C K S ( .4 8 )

f 3EI GAK,

El
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where the shear form factor is

6(1 + v)(1 )2

(7 - 6)(1 L - (20 + 12v)(-)2 (A9)

By substituting the expressions of (A8) into the expressions of (A7) and sub-

stituting again into equation (1), the general field transfer matrix for a beam

element becomes equation (3) of the main text,

1 2EI 6EI GA , _

9i 0 1 -L 2 (3)
El7 2 EI (3)

l~i 0 0 1 li

l 0 0 01 _



145

APPENDIX B

Derivation of Equations (4) through (10)

Recalling equation (1) for the general shaft element of Fig. 1,

Oi = 0 1 .3 a Oi-1
A'li 0 0 1 1 -Ili_ 1(1)

Vi 0 0 1- jrz-

By applying the cantilevered boundary conditions used for multiple station

transfer matrix analysis;
2-1 := 0

(B1)
Oi-1 =0

and by first applying a shear tip load, Vi, with no bending moment tip load, Mi,

the force-displacement relationships can be written. First summing the forces

in the y direction,

}-1 - i = 0 - Vi = Vi;- I(B2)

and by summing moments about the left end,

.1Ii_1 - IT'l = 0 , .Il-j = -V7 (B3)

Now substituting (B2) and (B3) into (1) and solving for the displacements,

Y aVi - bl'7

(B4)
O, = aV - 3Vl

and solving for the flexibilities a and a,

a - bl
0, (B5)

9,1
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For a unit shear load,
a = Y,- bI

(B6)
o , - 31

By defining Y,, and 0,, as the radial and rotational displacements respectively of

the right end due to a shear tip load and no moment load, then the flexibilities

become
a= , - bI

(B7)
a= 0 -31

Now applying a bending moment tip load, Mi, with no shear tip load, V§, the

force-displacement relationships can be written. First summing the forces in the

y direction,

V_-Ii= 0 , - = V= 0 (B8)

and by summing moments about the left end,

-Iii-1 - Mi = 0 A' i- 1 = Ali (B9)

Now substituting (B8) and (B9) into (1) and solving for the displacements,

Iri = bMi
(B1O)

9i = 3Mi,

and by defining Y,, and 0, as the radial and rotational displacements respec-

tively of the right end due to a bending moment tip load and no shear tip load,

then Y"m = b.1,
(BI1)

OM = 3-11i

For a unit load. equations (5) and (7) of the main text are written as

b 1 (5)

3 = 0m (7)
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By substituting (5) and (7) into (B7), equations (4) and (6) are written as

a = (Ym) 1-, (4)

a = (9m) (6)

Now recalling from advanced strength of materials for a Timoshenko beam ele-

ment with unit loads applied in turn, the flexibilities become;

12

2EI

31 l (B12)} =-3EI G'AK,

0 - EI

and substituting the equations of (B12) into (4) through (7), the flexibility

coefficients for a beam element become equations (8), (9) and (10) of the main

text,

P1a - -(8)
6EI GACKS

b= P (9)2EI

31 (10)
LI
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APPENDIX C

Derivation of Equations (11) through (14)

Recall the general structure element of Fig. 1. By fixing the opposite end (i)

and loading the new rigid end (i - 1) so that the same load end conditions exist

on the general structure element as before, then the same strain energy state

exists and the following analysis can be applied. (See Fig. 70 for an illustration

of the general structure element now in the negative attitude.)

By summing forces in the y direction,

1- - = 0 , V 1 l

and by summing moments about the right end,

-I- - l(V) - -l, = 0 , Wii -l= - (V) (C2)

Solving for the displacements at the right end (i - 1),

-I Y - 1(9i) + +i1 (f o) i -(fy)"
(C3)

Oi-: Oi - Ml-(foo)n -

where "n" denotes the flexibility when loaded in the negative attitude. By

assembling into matrix form and isolating the flexibility coefficients in order to

obtain the flexibility transformation matrix,

(fK - In- (f yy )n ( C 4)

SOi- 1  0 1 Oi + -(oo), -(fey)" I'-

Recalling for a general structural element that;

a = l(fye)- fyy

b = fyo

(.47)
= (foe) - fey

3 = foe
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Vi vi-1

Fig. 70. ('one with negative attitude loading for the
transformation identities development.
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substituting "n" for the negative attitude structure but loaded as in Fig. 1, and

solving for the flexibilities,

(fy)' = b,

(foo) = 3n

(C5)
-f) l(b ) - a

(fo) /,3, ) -a,

By substituting (C5) into (C4),

Y -I [1 -1f Yi F (bn)-a, 1 f ,Ii- C6
a - V-i (C6)

Solving for the displacements at end (i),
Y, l l Il j , 1 b (b,) - a, A i j ( 79iE- 0 1 O.'7)

Recalling the transformation of the positive attitude general structure element,

equation(I), and separating the flexibility coefficients in order to obtain the

flexibility transformation matrix,
Yi 1 Yj, +[bpa l

where "p" was inserted to designate the flexibility coefficients of the positive

attitude general structure element. Now subtracting (C7) from (C8),

bp rp -b a, -(bn) 1Cq-3p a = 0 1 [3,, ) - a, (

Solving for the negative attitude flexibility coefficients in terms of the positive

attitude flexibility coefficients,

a = ap - 1(bp) + 12(3) - l(ap)

b, = l(3p) - bp
(CIO)

3,, = 3,) - ap

3n = 3,,
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These equations represent the transformation of the flexibility coefficients of the

general structure element from the positive attitude to the negative attitude.

Now for the specific case of the conical structure used in turbomachinery,

because the cone is an axisymmetric structure, the flexibility matrix is symmet-

ric, thus

fey = f 0 (C'11)

then by substituting (Cll) into (A7),

a = 13 - b (12)

Also,

(C13)

= 1(3p) - bp

and finally by substitution of (C13) into (CIO), the flexibility coefficient trans-

formation from the positive attitude of a conical element to the negative attitude

of the same conical element is written as equations (11) through (14) of the main

text,

a, = ap (11)

b, = ap (12)

a = bp (13)

3= 3p (14)
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APPENDIX D

C
C ANSYS EXAMPLE INPUT FILE
C EDWARD ANTHONY L'ANTIGUA
C TEXAS A&M UNIVERSITY
C

/PREP7
/TITLE.ROTOR WITH SHELL ELEMENTS
C
C SELECT SHELL ELEMENT
C
ET, 1,63
C
C SELECT MATERIAL PROPERTIES
C YOUNG'S MODULUS.POISSON'S RATIO
C
EX.1.30E6
NUXY, 1,0.3
C
C INPUT STRUCTURE GEOMETR'
C GENERATE KEYPOINTS
C GENERATE LINE SEGMENTS
C GENERATE AREAS
C
R.1,3.2
K,1,0.16
K,2,4.30.9282
K,3,8,45.8564
L,1,2
L.2.3
K.1000,0.0
K,1001,1,0
AROTAT,1.2 ..... 1000,1001,360,4
C
C MESH GENERATION
C
ELSIZ.,6
AMESH.ALL
C
C FIX ALL LEFT END NODES
C
NRSEL.X.0

OALL.ALL
NALL
C
C CREATE INFINITELY RIGID RIGHT END
C BY USING DO..F. CONSTRAINT EQUATIONS
C
CERIG,1,2

CERIG. 1.3
CERIG, 1,4
CERIG. 1,5
CERIG. 1,6
CERIG. 1,7

CERIG, 1,92
CERIG,1,93
CERIG. 1,94
CERIG, 1.95
CERIG,1.96
CERIG,1,97
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CERIG. 1*170

CERIG,. 171
CERIG. 1.172
CERIG. 1,173
CERIG. 1.174
CERIG. 1 ,175
CERIG. 1.248
CERIG. 1.249
CERIG. 1.250
CERIG. 1.251
CERIG. 1.252
C
C APPLY RIGHT END LOADING
C
NRSEL X .8
NRSEL Y .0
F,ALL.FY,-0.5
NALL
C
C REORDER SOLUTION WAVEFRONT IN ORDER TO

C MINIMIZE MATRIX SIZE AND SOLUTION TIME
C
wSORT. X
wSTART
WAVES
C
C ONE ITERATION FOR LINEAR SOLUTION
C
ITER, I
AFWRIT
FINISH
/EXE
/ INPUT.27
FINISH
/EOF
C
C POST PROCESSING DATA COLLECTION
C
/POST I
/OUTPUT.,6
SET.1I, 1 *

C
C SELECT MIDLENGTH NODAL DISPLACEMENTS

C TO CHECK FOR ANY OVALIZATION
C
NRSEL. X.4
NRSEL.Y .0
PRNODE
PLDISP
MALL
'PSEL . X . 4
NRSEL.Z .0
P RNOD E
PLDISP
NALL
C
C SELECT END NODAL DISPLACEMENTS TO
C DETERMINE FLEXIBILITY COEFFICIENTS
C
NRSEL. X 8
NRSEL. V.0
PR NOD E
PLDISP
NALL
NRSEL . X 8
NRSEL. Z.0
P RNOD E
PLD ISP
NALL
/OUTPUT. I

/EOF
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